## 2022 AMC 1OB

Time limit: 75 minutes
Typeset by: LIVE, by Po-Shen Loh
https://live.poshenloh.com/past-contests/amc10/2022B


Copyright: Mathematical Association of America. Reproduced with permission.

1. Define $x \diamond y$ to be $|x-y|$ for all real numbers $x$ and $y$. What is the value of

$$
(1 \diamond(2 \diamond 3))-((1 \diamond 2) \diamond 3) ?
$$


2. In rhombus $A B C D$, point $P$ lies on segment $\overline{A D}$ so that $\overline{B P} \perp \overline{A D}, A P=3$, and $P D=2$. What is the area of $A B C D$ ? (Note: The figure is not drawn to scale.)


A $3 \sqrt{5}$
B 10
C $6 \sqrt{5}$
D 20
E 25
3. How many three-digit positive integers have an odd number of even digits?

A 150
B 250
C 350
D 450

E 550
4. A donkey suffers an attack of hiccups and the first hiccup happens at $4: 00$ one afternoon. Suppose that the donkey hiccups regularly every 5 seconds. At what time does the donkey's 700th hiccup occur?

A $\quad 15$ seconds after $4: 58$
B $\quad 20$ seconds after 4:58
C $\quad 25$ seconds after 4:58
D $\quad 30$ seconds after $4: 58$

E $\quad 35$ seconds after $4: 58$
5. What is the value of

$$
\frac{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}{\sqrt{\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right)\left(1-\frac{1}{7^{2}}\right)}} ?
$$


6. How many of the first ten numbers of the sequence

## $121,11211,1112111, \ldots$

are prime numbers?
A 0
B $\quad 1$
C 2

D 3
E 4
7. For how many values of the constant $k$ will the polynomial $x^{2}+k x+36$ have two distinct integer roots?

A 6
B 8

C $\quad 9$
D 14
E 16
8. Consider the following 100 sets of 10 elements each:

$$
\begin{aligned}
& \{1,2,3, \ldots, 10\} \\
& \{11,12,13, \ldots, 20\} \\
& \{21,22,23, \ldots, 30\} \\
& \vdots \\
& \{991,992,993, \ldots, 1000\}
\end{aligned}
$$

How many of these sets contain exactly two multiples of 7 ?
A 40
B 42

C $\quad 43$
D 49
E 50
9. The sum

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{2021}{2022!}
$$

can be expressed as $a-\frac{1}{b!}$, where $a$ and $b$ are positive integers. What is $a+b ?$

| A | 2020 |
| :--- | :--- |
| B | 2021 |
| C | 2022 |
| D | 2023 |
| E | 2024 |

10. Camila writes down five positive integers. The unique mode of these integers is 2 greater than their median, and the median is 2 greater than their arithmetic mean. What is the least possible value for the mode?

| A | 5 |
| :--- | :--- |
| B | 7 |
| C | 9 |
| D | 11 |
| E | 13 |

11. All the high schools in a large school district are involved in a fundraiser selling Tshirts. Which of the choices below is logically equivalent to the statement "No school bigger than Euclid HS sold more T-shirts than Euclid HS"?

A All schools smaller than Euclid HS sold fewer T-shirts than Euclid HS.

B No school that sold more T-shirts than Euclid HS is bigger than Euclid HS.

C All schools bigger than Euclid HS sold fewer T-shirts than Euclid HS.

D All schools that sold fewer T-shirts than Euclid HS are smaller than Euclid HS.

E All schools smaller than Euclid HS sold more T-shirts than Euclid HS.
12. A pair of fair 6 -sided dice is rolled $n$ times. What is the least value of $n$ such that the probability that the sum of the numbers face up on a roll equals 7 at least once is greater than $\frac{1}{2}$ ?

A 2
B 3
C 4
D 5
E 6
13. The positive difference between a pair of primes is equal to 2 , and the positive difference between the cubes of the two primes is 31106 . What is the sum of the digits of the least prime that is greater than those two primes?

A
8

B $\quad 10$
C $\quad 11$
13
E $\quad 16$
14. Suppose that $S$ is a subset of $\{1,2,3, \cdots, 25\}$ such that the sum of any two (not necessarily distinct) elements of $S$ is never an element of $S$. What is the maximum number of elements $S$ may contain?

## A <br> 12

B

$$
13
$$

C

$$
14
$$

D
15

E
16
15. Let $S_{n}$ be the sum of the first $n$ term of an arithmetic sequence that has a common difference of 2 . The quotient $\frac{S_{3 n}}{S_{n}}$ does not depend on $n$. What is $S_{20}$ ?

A 340
B $\quad 360$
C $\quad 380$
D 400
E $\quad 420$
16. The diagram below shows a rectangle with side lengths 4 and 8 and a square with side length 5 . Three vertices of the square lie on three different sides of the rectangle, as shown. What is the area of the region inside both the square and the rectangle?


A $15 \frac{1}{8}$
B $15 \frac{3}{8}$
C $15 \frac{1}{2}$
D $15 \frac{5}{8}$
E $15 \frac{7}{8}$
17. One of the following numbers is not divisible by any prime number less than 10 . Which is it?

18. Consider systems of three linear equations with unknowns $x, y$, and $z$,

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=0 \\
a_{2} x+b_{2} y+c_{2} z=0 \\
a_{3} x+b_{3} y+c_{3} z=0
\end{array}\right.
$$

where each of the coefficients is either 0 or 1 and the system has a solution other than $x=y=z=0$. For example, one such system is

$$
\left\{\begin{array}{l}
1 x+1 y+0 z=0 \\
0 x+1 y+1 z=0 \\
0 x+0 y+0 z=0
\end{array}\right.
$$

with a nonzero solution of $(x, y, z)=(1,-1,1)$. How many such systems of equations are there? (The equations in a system need not be distinct, and two systems containing the same equations in a different order are considered different.)

A 302

B 338

C 340
D 343

E $\quad 344$
19. Each square in a $5 \times 5$ grid is either filled or empty, and has up to eight adjacent neighboring squares, where neighboring squares share either a side or a corner.
The grid is transformed by the following rules:

- Any filled square with two or three filled neighbors remains filled.
- Any empty square with exactly three filled neighbors becomes a filled square.
- All other squares remain empty or become empty. A sample transformation is shown in the figure below.


Suppose the $5 \times 5$ grid has a border of empty squares surrounding a $3 \times 3$ subgrid. How many initial configurations will lead to a transformed grid consisting of a single filled square in the center after a single transformation? (Rotations and reflections of the same configuration are considered different.)

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $?$ | $?$ | $?$ |  |
|  | $?$ | $?$ | $?$ |  |
|  | $?$ | $?$ | $?$ |  |
|  |  |  |  |  |

Initial


Transformed

A 14

B 18

C
22

D $\quad 26$

E
30
20. Let $A B C D$ be a rhombus with $\angle A D C=46^{\circ}$. Let $E$ be the midpoint of $\overline{C D}$, and let $F$ be the point on $\overline{B E}$ such that $\overline{A F}$ is perpendicular to $\overline{B E}$. What is the degree measure of $\angle B F C$ ?

| A | 110 |
| :---: | :---: |
| B | 111 |
| C | 112 |
| D | 113 |
| E | 114 |

21. Let $P(x)$ be a polynomial with rational coefficients such that when $P(x)$ is divided by the polynomial $x^{2}+x+1$, the remainder is $x+2$, and when $P(x)$ is divided by the polynomial $x^{2}+1$, the remainder is $2 x+1$. There is a unique polynomial of least degree with these two properties. What is the sum of the squares of the coefficients of that polynomial?
A ..... 10
B ..... 13
C ..... 19
D ..... 20
E ..... 23
22. Let $S$ be the set of circles in the coordinate plane that are tangent to each of the three circles with equations

$$
\begin{aligned}
x^{2}+y^{2} & =4, \\
x^{2}+y^{2} & =64, \\
(x-5)^{2}+y^{2} & =3 .
\end{aligned}
$$

What is the sum of the areas of all circles in $S$ ?
A $48 \pi$
B $68 \pi$
C $96 \pi$
D $102 \pi$
E $136 \pi$
23. Ant Amelia starts on the number line at 0 and crawls in the following manner. For $n=1,2,3$, Amelia chooses a time duration $t_{n}$ and an increment $x_{n}$ independently and uniformly at random from the interval $(0,1)$. During the $n$th step of the process, Amelia moves $x_{n}$ units in the positive direction, using up $t_{n}$ minutes. If the total elapsed time has exceeded 1 minute during the $n$th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most 3 steps in all. What is the probability that Amelia's position when she stops will be greater than 1 ?

24. Consider functions $f$ that satisfy

$$
|f(x)-f(y)| \leq \frac{1}{2}|x-y|
$$

for all real numbers $x$ and $y$. Of all such functions that also satisfy the equation $f(300)=f(900)$, what is the greatest possible value of

$$
f(f(800))-f(f(400)) ?
$$

A ..... 25
B ..... 50
C 100
D ..... 150
E 200
25. Let $x_{0}, x_{1}, x_{2}, \ldots$ be a sequence of numbers, where each $x_{k}$ is either 0 or 1 . For each positive integer $n$, define

$$
S_{n}=\sum_{k=0}^{n-1} x_{k} 2^{k}
$$

Suppose $7 S_{n} \equiv 1\left(\bmod 2^{n}\right)$ for all $n \geq 1$. What is the value of the sum

$$
\begin{gathered}
x_{2019}+2 x_{2020}+ \\
4 x_{2021}+8 x_{2022} ?
\end{gathered}
$$

| A | 6 |
| :---: | :---: |
| B | 7 |
| C | 12 |
| D | 14 |
| E | 15 |

Solutions: https://live.poshenloh.com/past-contests/amc10/2022B/solutions


